
~ Pergamon 

www.elsevier.com/locate/iappmathmech 

J. Appl. Maths Mechs, Vol. 68, No. 3, pp. 357-367, 2004 
© 2004 Elsevier Ltd 

All rights reserved. Printed in Great Britain 
PII: S0021-8928(04)00049-8 O021-8928/$--see front matter 

INVARIANT NORMALIZATION OF NON-AUTONOMOUS 
HAMILTONIAN SYSTEMS'  

A. G. P E T R O V  

Moscow 

e-mail: petrov@ipmnet.ru 

(Received 6 May 2003) 

A new method of constructing canonical replacements of variables in parametric form, which differs from the existing constructive 
methods in the Hamiltonian procedure: the method of derivative functions and the method of generators, is proposed. A criterion 
of the existence of a parametric representation of the canonical replacement of variables is formulated and the law of the conversion 
of the Hamiltonian is derived. The method is used to obtain the normal form of Hamiltonians. A definition of the normal form 
[1, 2] is used which does not require separation into autonomous - non-autonomous and resonance - non-resonance cases and 
is carried out within a single approach. A system of equations, similar to the chain of equations obtained previously in [1, 2], is 
derived for the asymptotics of the normal form. Instead of the generator and generating Hamiltonian method a parameterized 
generating function is used [3], which enables, as in [1, 2], a chain of equations to be obtained directly for the non-autonomous 
Hamiltonians but without reducing the system to an autonomous form. © 2004 Elsevier Ltd. All rights reserved. 

1. T H E  P A R A M E T R I C  F O R M  O F  T H E  C A N O N I C A L  
T R A N S F O R M A T I O N S  

We will formulate the general result of the parametrization of the canonical replacement of variables 
in Hamiltonian systems in the form of a theorem [3]. 

Theorem 1. Suppose the transformation of variables q, p --+ Q, P is written in the parametric form 

1 1 q = x -~ tFy ,  Q = x = ~gy 

1 1 
p = y + ~ F  x, P = y -  ~F  x 

(1.1) 

Then, for any function ~P(t, x, y) 
(1) the Jacobian of the two transformations q = q(t, x, y), p = p(t, x, y) and Q = Q(t, x, y), 

P = P(t, x, y) are identical: 

a(q, p) _ O(Q, P) _ J(t, x, y) (1.2) 
a(x, y) O(x, y) 

(2) in the regionJ > 0 the transformation (1.1) of the variables q, p ~ Q, P converts the Hamiltonian 
system H = H(t, q, p) into the Hamiltonian system H = H(t, Q, P) as follows: 

• t(t, x, y) + H(t, q, p) = //(t, Q, P) (1.3) 

where the arguments q, p, and Q, P in Hamiltonians H and H are expressed in terms of the parameters 
x and y by formulae (1.1). 

Our aim is to investigate for what canonical transformations the parameterization exists. 
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2. THE G E N E R A T I N G  F U N C T I O N S  

The canonical transformation can also be represented in terms of the generating functions Sl(t, q, P) 
and S2(t, Q, p) 

dS 1 = pdq + QdP + ( t / -  H)dt, detSlq P ~ 0 

dS 2 = -qdp  + PdQ + ( H -  H)dt,  detS2p Q ~ 0 

We will introduce the new generating function 

1 
= ~ [ S l ( t , q , P ) - q P + S z ( t , Q , p ) + Q p  ] (2.1) 

Its differential form is 

1 
i = 1  

Qi - qi Pi - pi 

dQ i + dq i dP i + dp i 
+ ( H -  H)dt (2.2) 

when dt = 0 the differential form d~ was derived by Poincar6 (see [5, p. 337]) and showed that if 
Q(q, p), P(q, p) is a canonical transformation, d~  is the total differential and the function ~(q, p) exists. 

We will solve Eqs (1.1) for x, y, and ~y, qJx, We obtain 

x =  ~(q+Q),  y =  ~(p+P) 

Ul/y : -  Q - q ,  ~F x = - P + p  
(2.3) 

Hence, with the condition that the Jacobian of replacement (2.3) is non-zero (O(x, y)/O(q, p) ~ 0), the 
equality dq5 = d ~  follows and also the fact that the functions • and u? are identical: 

• (x,y) = ~ ( . q + Q ~ q ' P - ! , P + P ~ q ' P ) ) =  ~ ( q , p )  

It follows from relations (1.2) and (2.3) that 

b(x,y) _ 1 _ 2-2ndet(E+A), A = ~(Q' P) 
O(q, p) J ~(q, p) 

and the condition that replacement (2.3) should be non-degenerate can be written as det(E + A) * 0, 
were A is the Jacobi matrix and E is the identity matrix respectively. 

We will formulate the result obtained. 

Theorem 2. If in the region (q, p) ~ f~ the transformation Q(q, p), P(q, p) is canonical, and not one 
of the eigenvalues of the Jacobi matrixA is equal to -1, parametrization (1.1) exists in the region £~. 

In [4] attention is drawn to the "depressing non-invariance" of generating functions with respect to 
the choice of the basis ,of the canonical system of coordinates and the invariance of the Poincar6 
differential form (2.2). Hence it follows that the parametric function ~(x, y) also has an invariant form. 
If the function U?(x, y) exists in some variables, it will also exist for any canonical replacement of the 
variables. The condition (J ~ 0) for the existence of parametric representation (1.1) is invariant with 
respect to the choice of the canonical variables, whereas the condition det Saqp * 0 depends on the choice 
of the canonical variables. The condition detSaqp * 0 may break down for a canonical replacement of 
the variables. Moreover, the class of parametrized canonical transformations is a considerably wider 
class of canonical transformations in terms of the generating function. Thus, rotation by 90°: q -- -p 
and p = Q cannot be represented in terms of the generating function S(q, P), but can be represented 
in terms of the parametric function u? = x 2 + yZ. These and other advantages of parametrization over 
the method of generating functions was pointed out in [3]. 

We will show how Eq. (1.3) leads to the previously developed [1, 2] method of invariant normalization 
of Hamiltonians. 
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3. INVARIANT N O R M A L I Z A T I O N  OF H A M I L T O N I A N S  

In a Hamiltonian system the normal form of the Hamiltonian is called the normal Birkhoff form [5]. 
The most compact definition of this form can be found in [6]. In all cases the generating Hamiltonian 
is chosen in the form of the simplest quadratic form for a linear oscillatory system, and the definition 
of a normal form is tied to the choice of the generating Hamiltonian and has a non-invariant form [5-9]. 

Two methods of constructing canonical replacements, which reduce a system to normal form, are 
most widely used in the literature. One method is based on the use of generating functions. This was 
used by Birkhoff [5]. In other method, Lie generators are used as generating functions, which is more 
convenient, since it does not require the inversion of power series, that is necessary in the case of 
generating functions. 

A general criterion of the Birkhoff normal form was proposed [1, 2] for a perturbed Hamiltonian 

kI( t ,q ,p,e)= Ho(t,q,p)+ F(t ,q,p,e) ,  ~ ' ( t ,q ,p ,e)=eFl( t ,q ,p)+e2F2(t ,q ,p)+. . .  

Definition. A perturbed Hamiltonian has a normal form if and only if the perturbation is the first 
integral of the unperturbed part OF~Or + {H0, F} = 0, where {f, g} = fpgq -fqgp are Poisson brackets. 

There are three reasons why this definition has an advantage over existing ones [4-8]. 
1. The solution of the complete system of Hamiltonian differential equations with the Hamiltonian 

in normal form is obtained by the superposition of the solutions of the unperturbed system and the 
solution of a system with an autonomous Hamiltonian, equal to F(0, q, p, e). The result was formulated 
in the form of a theorem in [2]. 

Zhuravlev's theorem. If a system with Hamiltonian/J satisfies the condition for a normal form, then, 
to construct the general solution of the corresponding Hamiltonian equations, it is sufficient: 

(A) to obtain a general solution of the generating system with Hamiltonian Ho(t, p, q); 
(B) to obtain a general solution of the system, defined solely by the perturbation F(0, p, q, e), with 

the condition that, in this system, the time, which occurs explicitly in the Hamiltonian, is put equal to 
ze ro .  

The general solution of the initial non-autonomous system can then be represented by the composition 
of the solution obtained in arbitrary order (instead of arbitrary constants in the solution of the second 
system one substitutes the solution of the first or vice versa). 

2. The invariant form of the criterion enables one to carry out normalization without preliminary 
simplification of the unperturbed part and without separation in the case of autonomous-non- 
autonomous and resonance-non-resonance. 

3. The asymptotics of the normal form and the replacement of the variables, which reduce the 
Hamiltonian to normal form, are found by successive quadratures of the functions known at each step. 

4. THE A L G O R I T H M  OF INVARIANT N O R M A L I Z A T I O N  USING 
P A R A M E T R I C  R E P L A C E M E N T  

We will show how Eq. (1.3) of Theorem 1 can be converted to an analogue of Zhuravlev's normalization 
method. 

Suppose we are given the Hamiltonian 

H(t, q, p) = Ho(t, q, p) + F(t, q, p, e), F(t, q, p, e) = eFl(t, q, p) + e2F2(t, q, p) + ... 

which it is required to convert to normal form. Suppose H(k)(t, Q, P, e) = H0(t, Q, P) + F(k)(t, Q, P, e) 
is the asymptotic form of the kth order normal form F(k)(t, q, p, e) = e/~l(t, Q, P) + ... +ekFk(t, Q, P) 

(k) k with the canonical replacement (1.1) and W (t, x, y, e) = aWl(t, x, y) + ... + e Wk(t, x, y) is the asymptotic 
form of the kth of the function W(t, x, y, e) in relations (1.1). 

Then, by Theorem 1 the asymptotic form W (k) will satisfy Eq. (1.3) which can be written as 

0tF(k) 

bt 
[ 1,T,(k) 1 (k) 

~ y Y - ~  x j  

1 (k) 
+ F(k)(t, x -21W(k). + ~W x y  ,Y  )_,. ~.(k)(t, x + ~Wy, y _ l  ~Wx/ (4.1) 
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Hence follows the chain of equations for determining th_e coefficients of the expansions of the canonical 
replacements ~i  and of the normalized Hamiltonians Fz 

3P~ + 
3~i3t + {H°' ~Fi} + Ri = Fi, - ~  {Ho, Fi} = 0; i = 1,2 . . . .  (4.2) 

The functions R i are calculated successively from the formulae 

1 
R 1 = F 1, R2 = F 2 + ~ { F I + F I , ~ I }  

z~ 
(4.3) 

If/4o is a polynomial of no higher than the second degree in q and p, then Ri, i <~ k will be coefficients 
of the expansion in powers of e of the function 

F(t, x -  ~ y ,  + ~(k)(t ' 1 1 Y ~Fx) - x+~Py, y-~Fx)+[ ' (k)( t ,x ,y)  = 

= eR~ + E2R2 + E3R3 + ... 

(4.4) 

A similar chain of equations (4.2) was obtained previously in [1, 2]; the equations are called homological 
equations and are written in the following form 

Ri = p~ d~i d~'i 
d t '  d-'7- = 0; i = 1,2 . . . .  (4.5) 

Here the total derivatives d/dt are calculated using the rule of the differentiation of complex functions 
J iG x, y), FiG x, y), in which x(t) and y(t), as functions of time, are determined from the solution of 
the problem for the unperturbed system 

= H0y, Y = -Ho~, x(t0) = x0, Y(t0) = Yo (4.6) 

If, in relation (4.5), we substitute the solution of system (4.6) instead of x and y, then it follows from 
the second equation of (4.5) that the function Fs is independent of the time t. The integral with respect 
to time of the first equation will then have the form 

t 

~Rs( t )d t  = (t - to)Fi(to, x0, Y0) + ~i( to ,  x0, Y0) - ~ i (  t, x, y) (4.7) 
to 

It also gives a key to the complete solution of the problem: the quadrature (4.7) also defines the normal 
form of the function qJi in the replacement of variables (1.1). 

Unfortunately, it is not always possible to represent the integral of the function R i in the form (4.7) 
uniquely. There will be uniqueness if the function Ri, after substituting solution of system (4.6) into it, 
turns out to be quasi-periodic (the sum of functions periodic in t). In this case the integral of Ri is equal 
to a linear and quasi-periodic function f(t). One can subtract from f(t) the mean part f(t), which is 
independent of time, and relate it to the second term on the right-hand side of (4.7). Representation 
(4.7) will then uniquely define f i ( to ,  x0, Y0) and the function ~i(to, Xo, Y0) with zero mean-time value 
• i(t, x(t), y(t)) = 0. The condition for R i to be quasi-periodic imposes limitations on the parameters 
for which a normal form exists. 

We will formulate the result obtained. 

The fundamental theorem. Asymptotic forms of the kth approximation of the normal form, and of 
the replacement of variables which lead to it, exist and are unique, if, after substituting the solution of 
system (4.6) into the functions Ri(i = 1, 2, ... , k), they turn out to be functions that are quasi-periodic 
with time. Then, on the right-hand side of integral (4.7) fi(to, x0, Y0) is a coefficient of the term that is 
linear in t and ~i(to, Xo, Y0) is a term that is independent of time. 

We will list the mean features of the proposed algorithm, which distinguish it from the main features 
of Zhuravlev's algorithm [1, 2], given in braces. 

1. The initial system H(t, q, p) is non-autonomous. {System H(q, p) is autonomous; if the initial system 
is non-autonomous, then, at first, it is reduced to an autonomous system with an increase in its order.} 
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2. The function ~(t, ~, x, y) is used for the canonical replacement. {For this purpose the generating 
Hamiltonian G(e, Q, P) is used.} 

3. The canonical replacement (q, p) ~ (Q, P) is sought in the parametric form (1.1). {The canonical 
replacement is sought on the phase flux of the Hamiltonian system.} 

The relation between the generating Hamiltonian G and the function ~t'. In Zhuravlev's method 
[1, 2] the replacement q, p ~ Q, P is sought on the phase flux of the Hamiltonian system 

dX/d'c = Gr, dY/d"c = -G x 
(4.8) 

X(0)  = q, Y(0)  = p; X(e)  = Q, Y(e)  = P 

where "c ~ [0, e] is an attxiliary parameter similar to the time t. 
This replacement in the proposed algorithm is carried out using parameterization. The function q~, 

which defines the mapping onto the phase flux of the Hamiltonian system (4.8), if found from the solution 
of the problem 

u?T(x,x,y) = G x+~Wy, y-~qJx , W(0, x,y) = 0 

We obtain ~t' = eG, to an accuracy of ~3 = e3. Hence, the asymptotic forms q'l = Go, q~2 = G1 of the 
first two approximations in both methods are identical, and consequently R1 and R2 in both methods 
are also identical. The remaining approximations for R3, R 4 .... will be different. The normal form itself 
is independent of the choice of the method. 

5. THE A L G O R I T H M  OF INVARIANT N O R M A L I Z A T I O N  FOR 
THE A S Y M P T O T I C  D E T E R M I N A T I O N  OF THE S E Q U E N C E  OF 

POINCARIE POINTS 

The algorithm proposed above enables one to obtain the asymptotic form of the general solution of 
the kth order. The algorithm can be considerably simplified for Hamiltonians that are periodic in time. 
In this case, rather than obtain the trajectories of motion q(t) and p(t), it is more useful to separate 
out in them the sequence of points qm = q(Tm), Pm = P(Tm) corresponding to instants of time 
t =tm = Tin (m = 0, 1, 2 . . . .  ) that are multiples of the period T. We will call this sequence of points 
on the trajectory Poincar6 points. 

The asymptotic solution for Poincar6 points is constructed as follows. From quadrature (4.7) when 
i = 1 . . . . .  k we obtain the functions Fi(0, Q, P) and ~i(0, x, y), where the last quadrature can be simplified 
by assuming to = 0 in equality (4.7). Hence, we obtain the asymptotic forms of the kth approximation 

F{k)(0, Q, P, e) = eFI (0, Q, P) +. . .  + ekFk(O, Q, P) 

~F(k)(0, x, y, e) = e~F1 (0, x, y) +. . .  + ekWk(0, X, y) 

After this we use Zhuravlev's theorem. 
Suppose Q(Tm, a, b), P(Tm, a, b) are the Poincar6 points of the unperturbed system. Suppose X(Tm, 

Q0, P0), Y(Tm, Q0, P0) are the Poincar6 points, obtained from the solution of the system of equations 

:_.(k) . . . .  ~ r.(k) .^ 
X = ~ r  tu, x , Y , e ) ,  Y = - ~ r  to, X , Y , e ) ,  X(0)  = Q0, Y(0)  = P0 

Then the Poincar6 Qm and Pm of the complete Hamiltonian system in the new variables Q and P are 
obtained by substituting a = X(Tm, Q0, P0), b = Y(Tm, Q0, P0) into the functions Q(Tm, a, b), P(Trn, 
a, b) (rn = 0, 1 . . . .  ). 

In the original variables the Poincar6 points are obtained using parametric replacement with the 
function ~(k)(0, x, y, e). In this replacement, the parameters x and y can be eliminated by expressing 
them in terms of q and p 

1 
+ 4{~I j, ~I/p} + x(q, p) = q + ~tiJp(q, p) ... 

y(q, p) = p - ~Vq(q, p) - {~F, ~ q }  -[- . . .  
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The new variables are expressed in terms of the old ones as follows: 

Q = 2x(q, p) - q, P = 2y(q, p) - p 

As a result, we obtain the relation between the new variables and the old ones 

Q(q, p) 

P(q, p) 

= q + qtp(q, p) + ~{~F, UXJp} + . . .  

= p -  Wq(q, p ) -  ~{V, Wq} + ... 
(5.1) 

In order to express the old variables in terms of the new ones, it is sufficient in formulae (5.1) to replace 
them with one another and then change the sign of ~F into the opposite. We obtain 

q(Q, P) = Q - vlJp(Q, P) + ~{W, qJp} + .... 

p(Q, P) = P + ~FQ(Q, P) - ~{~F, WQ} +. . .  
(5.2) 

Note that in the invariant normalization method [1, 2] the Campbell-Hausdorff  formulae are used 
for this purpose, which, to a second approximation, are identical with formulae (5.1) and (5.2), apart 
from the replacement of • by the generating Hamiltonian G. 

6. E X A M P L E S  OF A S Y M P T O T I C  S O L U T I O N S  

Extremely instructive examples [1, 2] demonstrate the considerable simplifications compared to all 
previous ones. This method is equivalent in simplicity to Zhuravlev's method [1, 2], but differs from it 
in that the chain of equations for the asymptotic forms is written in the initial Hamiltonian system 
irrespective of whether the system is autonomous or non-autonomous. In Zhuravlev's method [1, 2] 
the non-autonomous system must be reduced to an autonomous system with an increase in the order 
of the system and a chain of equations for the asymptotic forms is then written for it. 

We will demonstrate the method using two examples of the solution of problems of forced oscillations 
in resonance. To solve these problems by the classical method it is necessary to introduce another 
definition of a normal form [6]. This is not required in the proposed method. The normal form is 
calculated directly from the quadrature and the solution is then found. We will show this. 

Example 1. It is required to obtain a general solution of the equation describing the forced oscillations 
of a linear oscillator at resonance: q + q = esint. 

Example 2. In the problem of the forced oscillations of a non-linear During oscillator q + q = 
e(sint - q3 + 2)¢/), it is required to obtain the value of )~ for which the solution is periodic in time with 
period 2~ and to investigate the stability of this solution. 

In both examples the equations are Hamiltonian, have the same unperturbed Hamiltonian H 0 = 
(q2 + p2)/2 and the same solution of the unperturbed system of equations corresponding to it 

q = qoCOS(t- to) + pos in ( t -  to), P = _ qos in( t -  to) + pocos ( t -  to) (6.1) 

It is basic for constructing the normal forms in both examples. 
We will obtain the first approximation in Example 1. Substituting solution (6.1) into the expressions 

R1 = F1 = -qsint, we obtain a function Rif t ) ,  periodic in time, the integral of which has the form 

t 

I R l ( t )  dt = Fl(to, qo, Po)( t -  to) + C~l(to, qo, Po) + f ( t )  = 

to 

1 . 1 
= -~(qoslnto + PoCOSto)(t - to) - ~(qocost o + po sinto) + f ( t )  

Hence we obtain the first coefficients ffl and we a and expansions of the normal form/7 = Ho + eft1 and 
of the function • = e ~  
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1 2 + p 2 .  
= ~(Q ) + F(t, Q, P, e), F(t, Q, P, e) = -~(Qsint + Pcost) 

qJ(t, Q, P, e) = -4(Qcost + Psint) 

We will obtain the solution of the first approximation using Zhuravlev's theorem [2]. The system 
0 = -e/2,/~ = 0 corresponds to the perturbed part of the Hamiltonian if(0, Q, P) = -eP/2, and the 
solution 

Q = Qo-e t /2 ,  P = Po 

We substitute Q and P instead q0 andp0 into solution (6.1) and put to = 0 in it. We obtain a solution 
of the system of equations in the variables Q and P 

Q = (Qo-  et/2)sint + P0sint, P = - (Q0-  etl2)sint + P0cost 

The solution of the system of equations in the original variables q and p is obtained as follows. 
Substituting the function ~t'(t, Q, P, e) into formula (5.2), we obtain the replacement 

£ . £ 
q = Q+~slnt ,  p = P - ~ c o s t  

and, using it, we obtain the solution in the original variables 

q = ( Q o - ~ t ) c o s t + ( P o + 4 ) s i n t  = ( q o - 2 t ) c o s t + ( p o + ~ ) s i n t  

In the linear problem all the next terms of the series in e are equal to zero, and hence the first 
approximation is the exact solution. 

The solution of Example 2 was obtained previously in [1, 2] by the averaging method. For comparison 
we will obtain the solution by the normal-form method. 

We again use the quadrature (4.7). Substituting solution (6.1) into the expression Ra = F1 = 
-qsint - )7~ 2 + q4/4, we obtain the integrand Rl(t ). From quadrature (4.7) we obtain the coefficient of 
the expansion of the normal form ffl(t, Q, P) and, putting t = 0 in it, we obtain 

1 ~(e2+ p2) + 3 ( Q 2 +  p2) 2 FI(0, Q,P) = - ~ P -  

A fixed point will correspond to the periodic solution. Its coordinates are Q and P, which satisfy the 
system 

OQ = Q - ~ +  a2 = 0, -~-  = - ~ + P - ) L +  A 2 = 0 

Hence we obtain Q = 0, P = ~ when )L = 2A 2 + 1 8 _ ~ ,  where A = .~-Q2 + p2 is the amplitude. The 

dependence of m = 1 - e)~ on A is called the amplitude-frequency characteristic. 
The fixed point will be stable if the function F1 in it reaches a strict minimum or maximum. Hence 

we obtain the condition for the periodic solution to be stable 

3 2 9 2 
( ~ -  ~A )(~,-  ~A ) > 0 

which agrees with the similar condition obtained by the averaging method. 
In the third example, given below, to obtain a solution it is necessary to find higher approximations. 

The solution by the classical method would involve lengthy calculations. Using our method a solution 
is obtained much more simply. 

Example 3. It is required to obtain the Poincar6 points corresponding to the instants of time t n = 2rtn 
for the non-linear equation/~ = e2 cos t' cos q up to terms O(e°). 
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This equation describes different problems in mechanics and physics. One of them is the vibrational 
motion of a spherical particle in a liquid, in which a plane standing acoustic wave is produced [9, 10]. 
Suppose we have a vertical tube with a rigid horizontal cover. A standing wave is excited in the tube, 
in which the velocity of the liquid varies as v -- Amsinmt coskz, where m is the frequency of the wave, 
k is the wave number, z is the axis, directly vertically upwards and A is the amplitude of displacement 
of the particles of the liquid, which is assumed to be small. The frequency and wave number are related 
to the velocity of sound in the liquid as m = kc. If the condition .u/(pkca 2) ~ 1 is satisfied for a particle 
of radius a, the Stokes friction force and the Basset hereditary force will be negligibly small compared 
with the inertia forces. The equation of motion of a particle then has the form 

2 
(p+2P0)~' 0 = 3 p w - 2 ( p  0 - p ) g ;  w = 3 v +  v 3 v l 3 z = 3 v l 3 t  = Am cosmtcoskz 

Here p and 90 are the densities of the liquid and the solid particle and g is the coefficient of dynamic 
viscosity of the liquid. 

For a particle of neutral buoyancy (p --- P0) the equation reduces to the equation of Example 3, in 
which q = kzo, t' = rot, e = Ak .  

The classical averaging method [11] has been used to solve this equation [9, 10]. Expansion was carried 
out with respect to the parameter 8. To investigate the problem three approximations are required. The 
solution is obtained in the form 

q = 8fl + 82f2 + 83f3 + 0(84). 

We will show how the solution can be obtained using our method. The expansion will be carried out 
with respect to the parameter 5 = 8 2. Therefore, to achieve much higher accuracy, of the order of 8 6, 
two approximations in all are required with much fewer calculations. 

The system of Hamiltonian equations with Hamiltonian function 

= ~ p 2 + S F l ( t , q , p ) ;  F I = - c o s t s i n q  H 

is reduced to the equation of the example. 
We obtain the solution of the unperturbed system 

q = qo + po( t -  to), P = po 

and we substitute it into the expression R1 = F1. We substitute the periodic function Rif t)  obtained 
into the quadrature (4.7). We have 

t 
[ cos( -  t o + qo) c°s(to + qo) + + f l ( t  ) 

Rldt  = -  2+2Po 2 - 2 P o  I i  

t o 

Hence we obtain the first approximatiOn of the normal form and the parametric replacement of 
variables 

Fl = O, UFl(t,q,p) _ cos ( t+q)  + c o s ( - t + q )  (6.2) 
2 + 2 p  2 - 2 p  

In the second approximation 

cos(t + q) co_s (t - q))~ l~FIDff?l l cos tcosq  ( . . . . .  + 
R2 = 2 3q 3p = 4 \ (1 +p)2 (1 _p)2  J 

From integral (4.7) we obtain a term, equal to F2, which is linear with respect to time, and a term, 
equal to ~2, which is independent of the time. The final form of the normal form and of the function 
which defines the parametric replacement are 

1 2  ~J21 1 i. _ _ ~ 1 + 0 ( ~ 3  ) 
= 2P +]-6 ( I + P )  2 (1 

• (O,x,y) = 8y ,,,2COSX - 
1 - y  

~2( 1 -- 3y 2 -- 2y 4) sin2x + 0(~  3) 

16y(1 -y2)  3 
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The function q~(0, x,y) has a denominator which equal to zero fory = 0, _+ 1. Because of this, the normal 
form obtained is unsuitable for analysing motion with a small momentum p - & This well-known 
problem of small denominators of the asymptotic theory for Hamiltonian systems arises due to the fact 
that the unperturbed Hamiltonian is unsuitably chosen and does not reflect the qualitative behaviour 
of the system for a small momentum. To eliminate the small denominator in the formulae of the 
replacement of variables of the second approximation, one must change the unperturbed Hamiltonian 
and its change is taken to be a perturbation. 

We will illustrate this general rule using the solution of the example considered. 
Elimination of the small denominator y = 0. In order to eliminate the small denominator in the 

function ~2(x,y) of Example 3, we will represent the unperturbed Hamiltonian/4o and the perturbation 
F in the form 

5 2 8 2 
Ho = ~p2+ ~-cos2q, F = -Scos t s i nq -  ~cos2q  

Obviously the Hamiltonian of the system H = H0 + F remains unchange. 
We will obtain, by the invariant normal from method, the asymptotic solution for the Poincar6 points 

apart from small terms of the order of 5 3 ----- E 6. We will represent the solution of the unperturbed system 
in the form of an expansion in the parameter 5 

q =  a+ b t+ 82(4bCOS2a-1-1-(sin(a + b t ) - s i n a ) ) +  0 ( 8  3) 
4b 2 

8 2 
= b + ~ - ~ ( c o s a - c o s ( a + b t ) ) + O ( 6 3 ) ;  a = q(O), b = p(O), b ~ O  P 

From the quadrature of the first approximation we obtain the same as in the previous solution (6.2). 
In expression for R 2 we added the term 

1 1 
F 2 = -~cos2q = -~cos(2a+ 2bt) 

The quadrature of R2 is correspondingly changed. Calculating it, we obtain the normal form 

1 2  (p2 ~sin2Q/+ O(83 ) (6.3) = ~p + 82 3 - p2 

8( 1 - P2) 2 

and the function, which defines the parametric replacement, with the eliminated singularity as y ~ 0 

u?(O, x, y) = 8~1(0, x, y) + 82~2(0, x, y) + 0(83) 

/ 1 U?l(0'x'Y)= Y 2 cosx, u?2(0, x,y ) =  y3(5-y2) sin2x 
( 1 - y  ) 16(1-y2) 3 

The normal form enables us to obtain the fixed points and to investigate their stability. From the 
equations 

ORIOQ = O, OHIOP = O:=~ P = O, s inQcosQ = 0 

we determine, in the period Q ~ [0, 2r 0, the coordinates of four fixed points Mi(Qi, Pi) = ((i - 1)rc/2, 0) 
(i = 1, 2, 3, 4). The points M2 and M4 correspond to a minimum of the function H and, by Lagrange's 
theorem, are stable. By Lyapunov's theorem they correspond to a stable periodic solution. M 1 and M3 
are hyperbolic-type points. The function H has no minimum or maximum in them, and consequently 
these points are unstable. They correspond to two unstable periodic solutions. 

The invariant curves on which the Poincar6 points lie are obtained from the integral of the normal 
form H(Qm, Pro) = E. The invariant curves in the neighbourhood of the fixed points, in which E N 62, 
are of greatest interest. We will make the replacement E = 82C/4. Then, apart from small terms of the 
order of 83 we obtain a single-parameter family of invariant curves for Om and Pm (rn = O, 1, 2, .. .) 
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"2m( 1 + 82 3~-p2~/2 2 = ~82(C+ sin2O,~)2. Pm = _+8(I-182)JI.~(C+ sin' 2Q,=) 

4(1 - Pro) ) 

Using the replacement of variables 

1 2 + 0(83)) p = P(1 - 8sinQ + ~8 

which follows from (4.10) and (4.15), we obtain the invariant curves in the initial variables 

+ I  2 1 p, . .=8(1-Ss inQ, .  ~8 ) J ~ ( C  + sin2Q,n) 

The new variable Q must be expressed in terms of the old one using the replacement 

Qm = qm + 8cosqm--182sin2qm + 0(83 ) 

which is found from the formulae of the replacement of variables (5.1). For 8 < 0.1 it is sufficient to 
use the less accurate approximation 

1 2 -11/2 
Pm= +8(1 - 8sinq~,) ~(C + sin (qm + 8cosq=))J (6.5) 

In the range -1 ~< C < 0 the Poincar6 points lie on closed invariant curves. They correspond to finite 
motion around the fixed point M2 or M4. If we take into account an infinitesimal friction force, these 
invariant curves become spirals, along which the Poincar6 points will tend either to M2 or M4 as 
t ----> c~. 

When C > 0 the invariant curves correspond to infinite motion. When C = 0 we obtain the equation 
of the separatrices 

Pm = -+~2( 1 - 8sinqm)[sin(qm + 8eOSqm)l 

which separate the finite and infinite motions. 
In Fig. 1 we show the Poincar6 points, obtained numerically from the original equations with 

8 = 0.16. The initial values of the Poincar6 points are denoted by the small circles. These lie on invariant 
curves which are indistinguishable from the curves defined by Eq. (6.5). The dark circles denote the 
positions of the fixed points Mi(i = 1, 2, 3, 4). Their coordinates in the variables q,p are Ml(2rt - 8, 0), 
M2(n/2, 0), M3(rc + 8, 0), M4(3rc/2, 0). 
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